Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 313, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28331216

RESUMO

In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.

2.
Glob Chang Biol ; 23(5): 1881-1890, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27591144

RESUMO

Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected.


Assuntos
Ecossistema , Aquecimento Global , Lagos , Clima , Mudança Climática , Temperatura
3.
PLoS One ; 11(3): e0152466, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023200

RESUMO

Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored.


Assuntos
Lagos/química , Temperatura , Modelos Estatísticos , Modelos Teóricos , Fatores de Tempo , Água/química
4.
Glob Chang Biol ; 22(2): 682-703, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26598217

RESUMO

Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.


Assuntos
Mudança Climática/história , Modelos Teóricos , Clima , História do Século XX , Modelos Estatísticos , Análise de Componente Principal , Temperatura , Erupções Vulcânicas
5.
Sci Data ; 2: 150008, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977814

RESUMO

Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

6.
Ground Water ; 53(6): 943-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25412761

RESUMO

Although temperature is an important determinant of many biogeochemical processes in groundwater, very few studies have attempted to forecast the response of groundwater temperature to future climate warming. Using a composite linear regression model based on the lagged relationship between historical groundwater and regional air temperature data, empirical forecasts were made of groundwater temperature in several aquifers in Switzerland up to the end of the current century. The model was fed with regional air temperature projections calculated for greenhouse-gas emissions scenarios A2, A1B, and RCP3PD. Model evaluation revealed that the approach taken is adequate only when the data used to calibrate the models are sufficiently long and contain sufficient variability. These conditions were satisfied for three aquifers, all fed by riverbank infiltration. The forecasts suggest that with respect to the reference period 1980 to 2009, groundwater temperature in these aquifers will most likely increase by 1.1 to 3.8 K by the end of the current century, depending on the greenhouse-gas emissions scenario employed.


Assuntos
Mudança Climática , Água Subterrânea , Temperatura , Previsões , Modelos Lineares , Suíça
7.
Chimia (Aarau) ; 68(3): 155-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801847

RESUMO

In recent years, mass spectrometers with a membrane inlet separating gases from water for final analysis have been used successfully for the on-site quantification of dissolved gases in surface waters. In 'classical' membrane inlet mass spectrometers (MIMS), the membrane directly separates the water from the high-vacuum environment of the mass spectrometer. The gas equilibrium MIMS (GE-MIMS) that is described in this review, however, makes use of an intermediate pressure reduction stage after the membrane inlet. Hence, the gas concentrations after the membrane are at steady state, near solubility equilibrium with the water to be analyzed. This setup has several advantages over classical MIMS, which enable autonomous and continuous in-field operation. The GE-MIMS can be used to acquire noble gas concentration time series (NGTS). Noble gases are useful tracers for physical gas exchange and transport in groundwater and other aqueous systems. Hence NGTS enable the temporal dynamics of physical gas exchange and transport in groundwater and other aqueous systems to be investigated. To determine the O2 turnover that has occurred in groundwater since recharge, both the O2 concentration in situ and the total input of O2 to the groundwater since recharge is needed. Determination of the latter is only possible if the relevant physical exchange and transport mechanisms can be quantified. In particular, gas exchange between soil air and groundwater often significantly affects groundwater O2 concentrations. Determination of O2 turnover in groundwater therefore requires a combined analysis of O2 and noble gas concentrations.


Assuntos
Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Água Doce/análise , Espectrometria de Massas/métodos , Gases Nobres/análise , Oxigênio/análise , Monitoramento Ambiental/instrumentação , Água Subterrânea/análise , Lagos/análise , Espectrometria de Massas/instrumentação
8.
PLoS One ; 9(5): e96972, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24811123

RESUMO

Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry.


Assuntos
Análise Química do Sangue/métodos , Gás Natural/análise , Ar/análise , Eritrócitos/química , Humanos , Plasma/química , Reprodutibilidade dos Testes
9.
Glob Chang Biol ; 20(3): 811-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24038822

RESUMO

The (Lower) Lake of Zurich provides an ideal system for studying the long-term impact of environmental change on deep-water hypoxia because of its sensitivity to climatic forcing, its history of eutrophication and subsequent oligotrophication, and the quality and length of its data set. Based on 39 years (1972-2010) of measured profiles of temperature, oxygen concentration and phosphorus (P) concentration, the potentially confounding effects of oligotrophication and climatic forcing on the occurrence and extent of deep-water hypoxia in the lake were investigated. The time-series of Nürnberg's hypoxic factor (HF) for the lake can be divided into three distinct segments: (i) a segment of consistently low HF from 1972 to the late-1980s climate regime shift (CRS); (ii) a transitional segment between the late-1980s CRS and approximately 2000 within which the HF was highly variable; and (iii) a segment of consistently high HF thereafter. The increase in hypoxia during the study period was not a consequence of a change in trophic status, as the lake underwent oligotrophication as a result of reduced external P loading during this time. Instead, wavelet analysis suggests that changes in the lake's mixing regime, initiated by the late-1980s CRS, ultimately led to a delayed but abrupt decrease in the deep-water oxygen concentration, resulting in a general expansion of the hypoxic zone in autumn. Even after detrending to remove long-term effects, the concentration of soluble reactive P in the bottom water of the lake was highly correlated with various measures of hypoxia, providing quantitative evidence supporting the probable effect of hypoxia on internal P loading. Such climate-induced, ecosystem-scale changes, which may result in undesirable effects such as a decline in water quality and a reduction in coldwater fish habitats, provide further evidence for the vulnerability of large temperate lakes to predicted increases in global air temperature.


Assuntos
Lagos/química , Oxigênio/análise , Fósforo/análise , Mudança Climática , Monitoramento Ambiental , Fósforo/química , Solubilidade , Suíça
10.
Limnol Oceanogr ; 54(6): 2283-2297, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20396409

RESUMO

While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...